Вакуумный двигатель – Вакуумный двигатель — делал ли кто-нибудь? — Двигатели Стирлинга

Вакуумный двигатель. Пожиратель пламени.

Очередная интересная и познавательная игрушка из Китая. Двигатель, но не паровой, не внутреннего сгорания, не Стирлинга, хотя придуман именно Стирлингом.

Оговорка по Фрейду и п. 18

Как и, наверное, большинство читателей, я интересуюсь разными вещами. Всегда есть соблазн и желание приобрести что-то для своего увлечения, либо просто хочется поиграть с приглянувшимся гаджетом, как известно с возрастом лишь меняется цена игрушек.

Обзоры — это совмещение приятного с полезным. Мне нравится делиться своим опытом взаимодействия с различными вещами, спонсорам нравится видимо, как я это делаю, и получается взаимовыгодное сотрудничество. Я никогда не беру на обзор вещи, которые мне не интересны, и с которыми я не хочу провести какое-то время. Как правило я беру вещи, предназначение и характеристики которых я себе неплохо представляю, так я избегаю своего и вашего, мои уважаемые читатели, разочарования в большинстве случаев.

Обзоры я делаю объективно, товары не рекламирую, и моя цель дать вам пищу для размышления, и поделиться своим опытом пользования данной вещи. Читайте, думайте, пишите свое мнение в комментариях — в общении и обмене мыслями рождается истина!

Пара слов о том, что такое вакуумный двигатель (пожиратель пламени) – это двигатель использующий разницу между давлением окружающего воздуха и частичным разрежением (вакуумом) по разные стороны от поршня.

Устройство вакуумного двигателя.

В основе лежит открытое пламя рядом с заслонкой цилиндра, и поршень, находящийся в цилиндре.

Во время фазы 1 (забор продуктов горения), раскаленное пламя попадает в цилиндр, во время движения поршня от заслонки.

Затем (фаза 2) заслонка закрывается и продукты сгорания охлаждаются о стенки цилиндра. Во время охлаждения их объем существенно уменьшается, создается разряжение. Поршень начинает обратное движение к заслонке.

Во время фазы 3, заслонка поднимается и поршень выталкивает остатки продуктов горения наружу.

Так цикл замыкается и дальше по кругу. Работа данного двигателя описывается термодинамическим циклом Отто, также описывающим работу двигателя внутреннего сгорания.

Работа и производительность двигателя зависит от быстрого и эффективного охлаждения стенок цилиндра. Если охлаждение будет медленным или неэффективным, то двигатель работать не будет.

В любом случае КПД такого двигателя мизерный, т.к. свеча горит рядом и греет воздух, и лишь малая часть пламени засасывается внутрь. Такие двигатели не имеют практического применения, и могут лишь поддерживать собственное вращение.

Перейдем к герою сегодняшнего обзора.

Приехал он в коробке из простого картона. Коробка была обернута кучей «пупырок» и сохранила свою форму, несмотря на все тяготы почтового пересыла.

Качество упаковки меня приятно удивило. Все плотно лежало на своих местах в толстом слое формованного вспененного полиэтилена.

В комплект входил сам двигатель, 3 ключа под шестигранник, спиртовая горелка, маленькая бутылочка со смазкой, бутылочка под спирт, и загадочная трубочка, применение которой я так и не нашел.

Порадовала спиртовка с «вечным» фитилем из стальной сеточки

Двигатель стоит на основании из лакированной древесины, снизу 4 резиновые ножки

Двигатель выглядит очень качественно сделанным, производит приятное впечатление.

Оси вращения крепятся через миниатюрные подшипники. Вращение всех узлов двигателя плавное и тихое. Сборка отличная, все чистое, никаких отпечатков пальцев, потеков масла, грязи и т.д. Просто идеально. Основные материалы – сталь, маховики дюраль, противовесы – латунь.

Что меня смутило – отсутствие рубашки охлаждения цилиндра двигателя. Материал цилиндра – сталь, т.е. нагрев будет быстрый, охлаждение посредственное. КПД упадет и двигатель проработает недолго. Ну, это мысли, давайте их проверим на практике.

Наливаем в горелку спирт, поджигаем, крутим колесо – двигатель бодро начинает постукивать. Есть контакт – работает! ☺

Проработал двигатель пару минут, затем ожидаемо цилиндр нагрелся, охлаждение разогретых продуктов горения спирта замедлилось, двигатель плавно остановился. Перерыв на 20 минут на остывание.

Т.к. двигатель образовательный, то возможно это как говорят программисты «не баг, а фича». В конце концов, может это является частью учебного процесса. Можно объяснить устройство двигателя, почему он работает, как проходит изменение сил при изменении температуры стенок цилиндра. И почему двигатель останавливается при нагреве.

Понять, что хотели достичь создатели, не делая охлаждение стенок цилиндра — сложно, к двигателю шла инструкция на чистом китайском языке. Но судя по качеству и продуманности конструкции отсутствие радиатора охлаждения – не ошибка, а специальный расчет.

Как резюме. Двигатель полностью выполняет свою учебно- познавательную функцию. Качество изготовления на высоте, внешний вид очень, как по мне, приятный. Из недостатков можно и нужно отметить краткость его работы. Все же 2 минуты до перегрева это очень мало.

И как с мотором Мендосино из моего предыдущего обзора, напрашивается его ниша. Сам себе не купишь, но в подарок получить будешь рад. Можно дарить такое коллегам по работе или школьникам/студентам.

Всем удачи и больше хороших игрушек в жизни!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

вакуумный двигатель — патент РФ 2300634

Двигатель предназначен для использования в машиностроении в качестве вакуумного парового двигателя. Двигатель содержит цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, выполненное в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела. Изобретение обеспечивает повышение технико-экономических характеристик, упрощение конструкции, возможность использования любого вида источников энергии для работы двигателя, увеличение коэффициента полезного действия, минимизацию выбросов вредных веществ в окружающую среду. 3 ил.

Рисунки к патенту РФ 2300634

Изобретение относится к двигателестроению и касается усовершенствования паровых и вакуумных двигателей.

Наиболее близким к изобретению по технической сущности является двигатель, содержащий цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра (RU 2032833 С1, опубл. 10.04.1995).

Однако указанный двигатель имеет недостатки — недостаточно высокие технико-экономические характеристики, что связано со сложностью конструкции и невозможностью использования различных источников энергии.

Задача изобретения — повышение технико-экономических характеристик, упрощение конструкции, возможность использования различных источников энергии, увеличение коэффициента полезного действия, минимизация выбросов вредных веществ в окружающую среду.

Решение указанной задачи обеспечивается тем, что в двигателе, содержащем цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, упомянутое средство выполнено в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела.

Изобретение поясняется чертежами:

Фиг.1 — общая схема двигателя.

Фиг.2 — впускной клапан.

Фиг.3 — выпускной клапан.

Вакуумный двигатель содержит цилиндр 5 с поршнем 7, связанным с валом отбора мощности посредством шатуна или штока (условно не показаны), нагреватель (условно не показан), радиатор 11 системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях 6 (надпоршневой) и 8 (подпоршневой) цилиндра 5. Упомянутое средство выполнено в виде прочной емкости — вакуумной камеры 15 с предварительно откачанным из нее воздухом, соединенной с рабочими полостями 6 и 8 цилиндра 5 посредством газораспределительной системы и снабженной емкостью 17 для сбора сконденсировавшегося в ней рабочего тела. Газораспределительная система включает паропроводы 2 и 13 и трубопровод 12. Оппозитно расположенные рабочие полости 6 и 8 цилиндра 5 соединены посредством паропроводов 2 через впускные клапаны 3 и 9 с парогенератором 1, а упомянутая емкость 17 через насос 14 для перекачивания рабочего тела, теплообменник 16 предварительного подогрева рабочего тела и трубопровод 12 соединена с парогенератором 1 с возможностью создания герметичного контура циркуляции рабочего тела. Возможная утечка вакуума в камере 15 компенсируется вакуумным насосом 18 (фиг.1).

Рабочие полости 6 и 8 цилиндра 5 через выпускные клапаны 4 и 10, теплообменник 16, радиатор 11 системы охлаждения пара посредством паропроводов 13 связаны со средством создания вакуума — вакуумной камерой 15.

Вакуумный двигатель работает следующим образом.

Подготовка двигателя к работе включает следующее:

1. Заправку парогенератора рабочим телом.

2. Создание вакуума, то есть удаление воздуха из вакуумной камеры, парогенератора и рабочих полостей цилиндра.

Двигатель запускается с началом парообразования в парогенераторе.

Парогенератор 1, используя энергию горения топлива, генерирует пар, который по паропроводу 2 и через открытый впускной клапан 3 верхней крышки цилиндра 5 поступает в надпоршневую рабочую полость 6.

Одновременно с открытием впускного клапана 3 открывается выпускной клапан 10 нижней крышки цилиндра 5. Находящийся в подпоршневой рабочей полости 8 пар через открытый выпускной клапан 10, паропровод 13, теплообменник 16 и радиатор 11 устремляется в вакуумную камеру 15, где, резко расширяясь, конденсируется и накапливается в емкости 17. В подпоршневой рабочей полости 8 давление выравнивается с давлением внутри вакуумной камеры 15, то есть создается вакуум. Под воздействием образовавшегося в подпоршневой рабочей полости 8 вакуума поршень 7 перемещается в нижнюю мертвую точку, совершая полезную работу.

В увеличивающийся объем надпоршневой рабочей полости 6 продолжает поступать пар из парогенератора 1.

В момент подхода поршня 7 к нижней мертвой точке закрывается впускной клапан 3 и одновременно закрывается выпускной клапан 10.

Синхронно с закрытием клапанов 3 и 10 открываются впускной клапан 9 подпоршневой рабочей полости 8 и выпускной клапан 4 надпоршневой рабочей полости 6 цилиндра 5.

В подпоршневую рабочую полость 8 через открытый впускной клапан 9 начинает поступать пар из парогенератора 1. Одновременно через открытый выпускной клапан 4 из надпоршневой рабочей полости 6 пар по паропроводам 13 через теплообменник 16 и радиатор 11 системы охлаждения пара устремляется в вакуумную камеру 15, где, резко расширяясь, конденсируется и скапливается в камере 17.

В надпоршневой рабочей полости 6 давление выравнивается с давлением внутри вакуумной камеры 15, то есть создается вакуум. Под воздействием вакуума поршень 7 перемешается в верхнюю мертвую точку, совершая полезную работу.

В момент подхода поршня 7 к верхней мертвой точке выпускной клапан 4 верхней крышки цилиндра 5 и впускной клапан 9 нижней крышки цилиндра 5 закрываются. Одновременно открываются впускной клапан 3 верхней крышки цилиндра 5 и выпускной клапан 10 нижней крышки цилиндра 5. Далее рабочий цикл повторяется в вышеописанной последовательности.

Скопившееся в емкости 17 сконденсировавшееся рабочее тело с помощью насоса 14 перекачивается по трубопроводу 12 через теплообменник 16 обратно в парогенератор 1, образуя замкнутый контур циркуляции рабочего тела.

В теплообменнике 16 рабочее тело предварительно подогревается, забирая часть тепловой энергии отработанного пара.

Механизм привода клапанов может быть электромагнитным или механическим.

Двигатель обеспечивает многоступенчатое преобразование энергии рабочего тела и вакуума в полезную работу.

Технико-экономические преимущества изобретения заключаются в следующем:

— простой и эффективный способ создания вакуума в рабочих полостях цилиндра;

— повышение коэффициента полезного действия;

— возможность использования практически любого источника энергии для производства пара;

— экологическая безопасность системы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Двигатель, содержащий цилиндр с поршнем, связанным с валом отбора мощности, нагреватель, радиатор системы охлаждения, газораспределительную систему и средство создания вакуума в рабочих полостях цилиндра, отличающийся тем, что средство создания вакуума в рабочих полостях цилиндра выполнено в виде вакуумной камеры с предварительно откачанным из нее воздухом, соединенной с рабочими полостями цилиндра посредством газораспределительной системы и снабженной емкостью для сбора сконденсировавшегося в ней рабочего тела, причем рабочие полости цилиндра сообщены с парогенератором, а упомянутая емкость через насос для перекачивания рабочего тела и теплообменник предварительного подогрева рабочего тела соединена с парогенератором с возможностью создания герметичного контура циркуляции рабочего тела.

Вакуумный двигатель своими руками

Рисовать я не умею, поэтому картинку взял с интернета (автору картинки респект и уважуха). И немного дорисовал в Паинте.

Итак, вакуумная система дизеля OM661-662, устанавливаемая на Корандо и Муссо. На картинке вакуумная система «предпоследнего» варианта 662 мотора. У Последней редакции термовакуумный клапан повышения оборотов тоже заменен на температурный датчик и электроклапан.

На что нужно обратить внимание:
1. Вакуумный насос качает воздух ВНУТРЬ двигателя. И выхлоп его вместе с маслом, которое подается в полость насоса форсункой, попадает на цепь ГРМ и муфту опережения впрыска. Качает насос с давлением примерно 0,9 атм. По этой причине мотор серии OM600 наверное единственные, у которых нельзя определить степень износа по объему картерных газов из сапуна, т.к к картерным газам добавляется еще и воздух, накачиваемый насосом. Отсюда вывод: т.к. в картерном пространстве должно быть пониженное давление, сапун двигателя обязательно должен быть подключен ко впускному коллектору (ко входу турбины), что бы мотор «сам у себя отсасывал».

2. Есть два вида насосов:
Ударного типа — их мы не будем рассматривать, как устаревшие и не имеющие права на жизнь. Т.к. накачка в нем идет с помощью поступательного движения мембраны. Мембрану в движение приводит ролик-подшипник, который катается по волне муфты опережения впрыска. Разрушение этого ролика приводит в разрушению муфты опережения впрыска и разрыву цепи.

Центробежного типа — почти вечные и безотказные. Если только между масляной форсункой и передней крышкой двигателя установлено уплотняющее кольцо.

3. В вакуумном насосе есть обратный клапан. Обратные клапана центробежных насосов бывают мембранного типа (это уж точно вечные, как вечная игла для примусов), и клапан на основе пластикового шарика и пружинки.
С шариком случается такая неприятность: он изнашивается и заклинивает в положении перекрытия канала.Насос качать не может, вакуума нет, тормоза отказывают. Неприятность эта сначала бывает плавающая: то есть тормоза, то резко пропали на дороге. Заглушил, завел — опять есть тормоза.
Как бороться с шариком: шарик идеально подходит от дозатора водочной бутылки. Но можно просто выкинуть этот шарик с пружинкой и дело с концом.

4. Отбор вакуума для управления двигателем идет от тройника основной магистрали, идущей на вакуумный усилитель тормозов. Тройник этот не простой, а представляет из себя рестриктор. Т.е. отвод троника на управляющую магистраль очень тонкий. Это сделано для того, что бы при разгерметизации управляющей вакуумной системы тормоза работали.

Самое главное, не нужно бояться этих трубочек. Вот абсолютно упрощенная схема. Минимум того, что нам нужно для того, что бы заглушить мотор.

Теперь нам нужно решить задачу турботаймера и дистанционного запуска. Быдлоустановщики сигнализаций решают эту проблему влоб. Они просто на красную линию врезают через тройник жигулевский клапан, который стравливает вакуум в атмосферу. Т.е. есть напряжение на клапане — вакуум стравливается и не успевает дойти до глушилки на ТНВД. Многие при этом слышат звук стравливаемого воздуха под рулем.
Чем это плохо:
0. Во всей системе управления двигателем нет вакуума.
1. грязный воздух так или иначе, но попадает в насос, а далее в мотор.
2. Не работает клапан повышения оборотов
3. не включаются вакуумные хабы.

Косвенными признаком быдлоклапана являются следущие проявения:
1. При глушении мотор вздрагивает, брыкается и глохнет не сразу, а медленно умирает, как свинья, у которой пускают кровь. При исправной вакуумной системе мотор глохнет мгновенно.
2. Если сразу попытаться завести мотор, он не заводится. Т.к. вакууму с мембраны глушилки просто некуда стравливаться.

Вот две схемы быдловключения от быдлосигнальщиков.
Здесь жигулевский клапан включен через тройник.

А некоторые сигнальщики в своих извращенных фантазиях идут дальше и вообще выключают замок зажигния из вакуумной схемы.

Часто на форуме пишут: «Перестало работать глушение двигателя.» или «Глушится только после того, как газанешь.»
Я им отвечаю: «У тебя стоит быдлоклапан от жигулей»
Мне возражают «Но ведь два года работало…»

Дело в том, что жигулевские клапана крайне ненадежная вещь. Они не предназначены для постоянного включения. Электроагнитная катушка перегревается, начинает коротить и клапан недовключается. Из-за постоянного подсоса воздуха из салона клапан засоряется и опять таки недовключается.

Как сделать правильно? Правильно уже сделали на заводе. Смотрим на картинку

Как работает система повышения оборотов:
1. Термовакуумный клапан при температуре ниже 30 градусов открыт и свободно пропускает через себя вакуум.
2. Вакуум доходит до мембраны холостого хода (PLA) и происходит повышение оборотов.
3. Термовакуумный клапан при повышении температуры больше 30 градусов закрывается (в нем стоит биметаллическая пластинка). И остатки вакуума стравливаются через рестриктор зеленой линии.
Многие путают рестриктор с фильтриком. Они почти одинаковые и представляют собой белые бочонки. Но рестриктор в два раза выше. Очень часто даже в магазинах и аталогах их обоих ошибочно называют фильтрами.
Вот фильтр 0000780456. Внутри сетка, должен свободно продуваться.

А вот рестриктор 0000780856. Внутри очень тонкое отверстие. Продувается с трудом.

Почему многие ругают вакуумную систему повышения оборотов. При условии исправной вакуумной магисирали, виноват как правило не термоклапан, а забитый рестриктор или фильтрик, которые не дают стравиться вакууму после нагрева двигателя. В итоге мотор всегда работает на прогревочных. В редких случаях выходит из строя термовакуумный клапан.

Что можно усовершенствовать?
1. Поставить более мощный фильтр в начало вакуумной магистрали.
2. Поставить рессивер на линию включения вакуумных хабов. Например очень прикольным является вакуумный бачек системы кондиционера от Нексии (96166714). Это одновременно и бачек и обратный клапан.

В качестве грубого фильтра на основную магистраль и хабы предлагаю вот такой (GB202)

Итак, что нам понадобится для ремонта вакуумной системы:
1. Вакуумный шланг (9775003330) — он длиной около трех метров. Хватит на все и еще останетсч
2. Рестриктор 0000780856
3. Фильтрик родной 0000780456
4. Три фильтра топливных. Например GB202
5. Вакуумный бачек системы кондиционера от Нексии (96166714).
6. Тройники от омывателя ( T11-5207313) Штук пять думаю хватит. Ими заменим все родные резиновые тройники.

В итоге окончательная схема получается вот такая

В статье намеренно не затронут вопрос о разных диаметрах соединителей для вакуумной системы. Но это актуально для владельцев мерсокоробок и для настоящих мерседесов, где вакуумом управляется корректор фар и открытие дверей.

Владельцам мерсокоробок: перед вакуумным модулятором ТНВД обязательно должна устанавливаться соединительная трубка синего цвета.

Навигация
» Первая полоса
» Великая Победа
» Геополитика
» Политика
» Экономика и финансы
» Аналитика
» Точка зрения
» Интервью
» Общество
» Государство и управление
» Наука и образование
» Технологии и разработки
» Социология
» Новости регионов
» Зарубежные СМИ
» Нац безопасность
» Информационные войны
» Армия и конфликты
» Оружие и боевая техника
» Солдаты Империи
» Награды и отлич. знаки
Важные темы
Реклама
» Вакуумный двигатель – фантастика или реальность?

| 15 июль 2015 | Технологии и разработки |

Одна из задач космонавтики – познание законов самодвижения материи во Вселенной и практическое их использование. Но современную технику, основанную на принципах реактивного движения тел за счет отброса части своей массы, значительно ограничивает низкий КПД выведения. Есть ли выход из этого тупика?

КПД реактивных средств выведения составляет в лучшем случае около пяти процентов, а космический полет из-за малой скорости движения по инерции ( “ Ракета-носитель весом 500 тонн доставляет на околоземную орбиту полезный груз в 10 тонн. То есть КПД выведения всего 2%, гораздо меньше, чем у паровоза ”

В качестве альтернативы предлагается динамическая полевая космонавтика, основанная на принципах самодвижения тел за счет взаимодействия динамического поля КЛА с динамической полевой структурой Вселенной. При этом КПД полета

100 процентов, время ускоренного космического полета к цели в 10 000 раз меньше (чем при движении по инерции), отсутствие перегрузок в КЛА, динамическая полевая защита экипажа КЛА, полная автономность. Отпадает необходимость в космодромах, космических платформах, ракетоносителях.

Альтернативная космонавтика базируется на принципах нулевого движения, то есть с опорой на искусственную и реальную окружающую среду, но без выброса отработанного вещества и поля. Современная же не одно десятилетие использует принципы реактивного движения, повторим, с выбросом отработанного вещества (топлива, газов). Ракета-носитель весит 500 тонн, а на околоземную орбиту выбрасывается полезный груз в 10 тонн. То есть КПД выведения составляет всего два процента, что гораздо меньше КПД паровоза (12%).

Спутник, отделившись от ракеты, летит на орбите по инерции, что увеличивает длительность полета к цели. Полет к Луне при этом занимает двое суток, на Марс – 145 суток.

Альтернативная космонавтика является динамически свободной по отношению к полям тяготения планет и звезд. Она равноускоренна, то есть половину пути до цели корабль движется с ускорением, равным земному (9,8 м/с) в квадрате, а вторую половину – с замедлением такой же величины. Полет к Луне при этом займет три часа, к Марсу – 28 часов.

Фото: neelov.ru

В России в 1990 году электромеханик Виктор Воропаев впервые в мире сделал динамический полевой электростатический летательный аппарат на даче в гараже и совершил полет на высоту

15 метров, раскручивая велосипедными педалями два фанерных диска диаметром 1,5 метра в разные стороны (полная копия электрофорной машины ХVIII века), при этом началось самоускорение летательного аппарата (ЛА), что сильно испугало изобретателя и он вынужден был резко затормозить вращение дисков для приземления (написано со слов испытателя).

Аналогичное явление происходило и с дисками Серла в Англии. Расчеты, проведенные автором статьи, подтвердили реальность полета первого в России динамического полевого электростатического ЛА за счет динамического полевого взаимодействия с электрическим полем Земли, имеющим электрическую напряженность Е=100в/м на высоте один метр от поверхности земли, а на высоте

50 километров Е5000=5•106в/м. Динамический полевой ЛА Воропаева имел собственный отрицательный заряд Qл.а.=10 Кулон, вес Pл.а.=150 кг, подъемную силу Fл.а.= 200 кг при частоте вращения дисков n=120 об/мин, при отрицательной электрической напряженности поверхности Земли Q2=200 в/м на высоте два метра.

Простым примером электростатического динамического полевого ЛА является полет резинового шарика, заряженного трением отрицательно с ускорением в небо или прилипанием к потолку в квартире (проверено экспериментально).

Использование потенциальной энергии динамических полей планет, звезд, галактик и Вселенной позволяет человечеству уже сегодня совершать групповые и индивидуальные полеты на Земле, к Луне, Марсу и поясу астероидов в Солнечной системе без космодромов и ракетоносителей в динамическом полевом коконе-скафандре или КЛА.

Можно использовать и альтернативный вакуумный двигатель. Представьте взлетающую ракету с огненным факелом светящегося газа, вылетающего из сопел ракеты и создающего при этом избыточное донное давление к обтекаемой части ракеты. Перепад давления между верхней и нижней частями ракеты, помноженный на площадь сечения сопел двигателей, и есть подъемная сила ракеты. Аналогично работает фотонный двигатель. В вакуумном двигателе отсутствует выброс вещества и поля (энергии), поэтому он движется в космическом пространстве без затрат энергии и топлива – за счет окружающей среды.

Вакуумный двигатель позволит решить все транспортные проблемы человечества. Даст огромную экономию ресурсов и средств. Роскосмос, НАСА, другие космические корпорации могут закончить каменный век «современной реактивной» космонавтики к 2025 году с помощью альтернативной. Страна, которая первая перейдет на динамическую полевую космонавтику, станет мировым лидером в освоении Солнечной системы за пять – десять лет и поведет за собой человечество в будущее мирным путем к золотому веку.

Переход человечества в космическую цивилизацию – Эльдорадо для корпоративного бизнеса ХХI века с глобальным рынком космических услуг (безопасность, туризм, связь, освоение пояса астероидов, планет и т. д.) в

10 000 триллионов долларов.

Автор статьи предлагает глобальный космический бизнес-проект «Галактика». Но это отдельный разговор. Скажу лишь, что движение КЛА обеспечивается динамическим полевым квантовым двигателем (ДПКД) за счет опоры на полевую динамически упругую квантовую окружающую среду.

Источник энергии КЛА – энергия нулевых колебаний динамически упругой квантовой окружающей среды. Прототипы действующих двигателей и источников энергии описаны в работах Н. Теслы, С. Флойда, Т. Брауна, В. Щабетника, В. Леонова, В. Прокопьева, Б. Игнатова, Ю. Иванова, В. Ацюковского и других изобретателей.

Новизна проекта «Галактика» в том, что корпус КЛА является одновременно и двигателем в виде ДПКД, и источником энергии в виде динамической квантовой электростанции.

Чивилёв Виктор Иванович
Кандидат физико-математических наук, доцент кафедры общей физики МФТИ, Заслуженный работник высшей школы, заместитель председателя научно-методического совета ЗФТШ при МФТИ, член жюри Всероссийской олимпиады школьников по физике.
Алексей Николаевич Болгар
Выпускник Московского физико-технического института (МФТИ), редактор по физике в журнале «Потенциал».

В статье рассказывается о действующей модели вакуумного двигателя. Рассматривается принцип работы этой необычной машины, а также приводятся результаты экспериментального исследования мощности и КПД данной модели.

Что такое вакуумный двигатель? Если вы попробуете поискать по такому запросу информацию в Интернете, то с лёгкостью найдёте массу проектов двигателей, работающих на таинственной «энергии вакуума». Кому-то эти проекты могут показаться интересными, но практической пользы от них никакой. В лучшем случае они относятся к области научной фантастики, в худшем – к лженауке.

Мы же хотим рассказать о действительно работающей модели вакуумной машины в виде игрушки размером с ладонь (рис. 1), которую авторы этой статьи подвергли экспериментальным исследованиям. Машина, приобретённая через интернет-магазин умных развлечений «Семь пядей» (www.7pd.ru), имеет упрощённую коробку передач, обеспечивающую движение вперёд только на одной передаче, движение назад и «нейтралку». Поворот передних колёс осуществляется рулевым колесом, что даёт возможность двигаться машине по полу не только прямолинейно, но и по окружности. Энергию двигатель машины черпает от пламени спиртовой горелки, помещённой в передней части машины.

Сразу отметим, что речь пойдёт о довольно экзотическом представителе тепловых машин. Наш двигатель по принципу работы значительно отличается от своих собратьев и, в частности, от двигателя внутреннего сгорания, знакомого большинству из школьного курса физики. Более того, эту машину следует отнести к двигателям внешнего сгорания. Здесь пламя горит вне двигателя. Кстати, следует сказать, что двигатели этого класса обладают рядом преимуществ перед двигателями внутреннего сгорания. Они проще по конструкции и, как следствие, более долговечны. Благодаря внешнему сгоранию, им подходит практически любое горючее. И ещё одно важное в наш век борьбы за экологическую чистоту преимущество – за счёт равномерного процесса горения топлива в таких двигателях уменьшается количество вредных выбросов в атмосферу, поскольку происходит более полное сгорание топлива. Благодаря этим преимуществам двигатели внешнего сгорания уже активно используются в некоторых технических приложениях. Например, в гелиоэнергетических установках двигатели Стирлинга (тоже относящиеся к двигателям внешнего сгорания) преобразуют энергию сфокусированных солнечных лучей в механическую энергию.

2. Принцип работы

После столь интригующего введения разберёмся, наконец, в принципе работы нашего диковинного двигателя. На рис. 2 показаны основные элементы двигателя и их предназначение.

Рассмотрим весь рабочий цикл по этапам.

1) Клапан открыт, поршень движется вправо (рис. 3 а), и в цилиндр поступает горячий воздух (двигатель буквально засасывает пламя в цилиндр).

2) Поршень в своём движении достигает мёртвой точки (рис. 3 б), клапан закрывается, воздух в цилиндре охлаждается через стенки цилиндра, и поршень начинает обратное движение, т. к. давление в цилиндре становится меньше внешнего атмосферного.

3) Под действием разности давлений снаружи и внутри цилиндра поршень движется в сторону клапана (рис. 3 в).

4) Поршень доходит до второй мёртвой точки вблизи клапана (рис. 3 г) и под действием инерции маховика проходит мёртвую точку. Начинается движение поршня вправо. Далее цикл повторяется. Теперь, после объяснения принципа работы становится ясно, почему двигатель называется вакуумным. Дело в том, что разность давлений на поршень, необходимая для его работы, достигается не за счёт высокого давления нагретых газов, а за счёт низкого давления остывших газов, которые создают в цилиндре некоторое подобие вакуума. При этом «изюминка» двигателя заключается в том, что рабочий ход поршня происходит за счёт давления атмосферы. Также, осознав принцип работы, становится ясно, что наше лирическое название «огнедышащая машина» следует в данном случае понимать буквально. Ведь двигатель действительно «вдыхает» пламя от спиртовой горелки и «выдыхает» продукты горения.

3. Постановка физических вопросов

Всякий человек, серьёзно увлекающийся техникой и физикой, наигравшись вдоволь с подобными развивающими игрушками, непременно задаст себе массу любопытных физических вопросов, на которые нет ответа в инструкции по применению. Не удержались от этого соблазна и авторы этой статьи. Мы размышляли следующим образом. У всякого двигателя есть такая характеристика, как оптимальный режим работы. Дело в том, что мощность двигателя зависит от частоты оборотов его вала и достигает максимума при некотором её значении. Представляет интерес путём какого-то несложного эксперимента оценить это оптимальное значение частоты оборотов. Кроме того, хотелось бы получить приблизительное значение КПД в этом режиме.

Как же заставить вращаться вал двигателя с различными частотами, оставляя при этом возможность для измерения его мощности? Возникла очень простая идея: нужно намотать на ось ведущих колес нить, подвесить на её конце груз (рис. 4), измерить частоту вращения колёс, которая пропорциональна частоте оборотов вала двигателя.

Если закрепить машину на краю стола, включив передачу для движения вперёд, то при работе двигателя груз массой будет подниматься. При каждой массе груза двигатель быстро выходит на режим, когда скорость подъёма груза становится постоянной. Если поделить изменение потенциальной энергии груза на время при его подъёме на высоту то получим полезную мощность: (1)

Измеряя время подъёма различных грузов на фиксированную высоту можно рассчитать частоту оборотов вала двигателя по формуле: (2) здесь – радиус оси колеса. Множитель 10 необходим для пересчёта частоты вращения ведущих колёс в частоту вращения вала двигателя, т. к. вращение от вала двигателя на колёса передаётся с помощью редуктора с передаточным числом, равным Очевидно, что чем больше масса груза тем меньше частота оборотов вала двигателя Поэтому, измеряя время подъёма грузов разных масс и пользуясь формулами (1) и (2), можно построить зависимость Это и было сделано. График полученной экспериментально зависимости показан на рис. 5.

Из рисунка видно, что мощность двигателя максимальна при частоте оборотов вала двигателя около 285 об/мин. Почему же мощность двигателя при уменьшении частоты оборотов сначала растёт, а затем падает (участки АС и CD на рис. 5)? Как это можно качественно объяснить? Для ответа на вопрос нужно ещё раз вникнуть в принцип работы двигателя и учесть, что мощность пропорциональна произведению действующей на поршень силы и скорости поршня. При уменьшении частоты оборотов скорость поршня уменьшается, но охлаждение газа в цилиндре происходит в течение большего промежутка времени. Очевидно, что при этом газ охлаждается до более низкой температуры. Это приводит к увеличению разности давлений по обе стороны поршня. Как следствие, увеличивается действующая на поршень сила. Итак, мы установили экспериментально оптимальное значение частоты оборотов вала двигателя и объяснили качественно зависимость мощности от частоты оборотов.

Теперь перейдём ко второму из поставленных физических вопросов. Оценим КПД двигателя для режима работы на максимальной мощности. Согласно известной формуле для КПД: (3)

Здесь – полезная работа, совершаемая двигателем, – энергия, затраченная на работу двигателя. В нашем случае полезной работой является подъём груза на высоту H: (4) Затраченная энергия – это та

энергия, которая выделяется при сгорании спирта: (5) где и q – масса сгоревшего спирта за время подъёма груза и его удельная теплота сгорания. Таким образом, используя экспериментальные данные и формулы (3)–(5), мы смогли оценить КПД двигателя. Было получено чрезвычайно малое значение °0,01%, что неудивительно, ведь почти вся тепловая мощность спиртовки (а это около 150 Вт) расходуется на нагрев окружающей среды.

Несмотря на низкую энергетическую эффективность, нужно признать, что рассмотренная вакуумная машина является оригинальной развивающей технической игрушкой. Во-первых, даже просто собрать эдакое «чудо техники» собственными руками из отдельных деталей очень интересно. Во-вторых, размышления над принципом работы двигателя, как мы увидели, приводят к занимательным физическим вопросам. Надеемся, что за время прочтения этой статьи у любопытного читателя возникли свои интересные вопросы.

Способ работы вакуумного двигателя и вакуумный двигатель

Способ работы вакуумного двигателя и вакуумный двигатель относятся к энергомашиностроению. Способ реализуется за счет того, что создают разрежение в рабочих камерах путем сообщения их с вакуумной камерой для перемещения поршней к ВМТ и подачи в рабочие камеры воздуха для перемещения поршней к НМТ, на крышке блока для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к поршню для давления на его шток при перемещении поршня к ВМТ и сообщают рабочие камеры с атмосферой при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к НМТ. Двигатель снабжен компрессором и распределительным валом с кулачками и толкателями, поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно — для сообщения рабочей камеры с вакуумной камерой посредством патрубка с краном, связанным с распределительным валом через толкатель, а второе — для подачи воздуха в рабочую камеру, каждый пружинный клапан имеет корпус и шток, снабженный упором и пружиной для взаимодействия с поршнем. Изобретение обеспечивает возможность регулирования мощности двигателя. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к двигателестроению, а именно к конструкции вакуумного двигателя и способу его работы.

Известен способ работы многотопливного двигателя, который заключается в следующем: разворачиваются коренные наружные и внутренние эксцентриковые вкладыши с зубчатыми венцами относительно коренных шеек коленчатого вала, тем самым поднимается или опускается коленчатый вал вместе с поршнями и обеспечивается регулировка объема камер в зависимости от вида топлива, а шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами также разворачиваются относительно шатунных шеек коленчатого вала, и обеспечивается оптимальный объем камеры сгорания в зависимости от величины нагрузки на двигатель для конкретного вида топлива (патент РФ №2144992, 2001).

Многотопливный двигатель внутреннего сгорания содержит коренные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, шатунные внутренние и наружные эксцентриковые вкладыши с зубчатыми венцами, поршни, камеру сгорания (патент РФ №2144992, 2001).

Преимущество указанного двигателя заключается в том, что повышается эффективность его работы.

Недостатками являются сложность конструкции и выделение большого количества отработанных газов в окружающую среду, что негативно влияет на экологическую обстановку.

Кроме того, при работе этого двигателя осуществляется тепловое воздействие на детали двигателя, что приводит к нарушению геометрии деталей, а в блоке и головке блока двигателя происходит кавитационное разрушение, из-за чего ресурс эксплуатации этого двигателя невысок.

Наиболее близким к предлагаемому изобретению является способ работы вакуумного двигателя, включающий создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке.

Для воздействия на поршень в рабочую камеру подают аммиак. Для создания разрежения в рабочей камере в вакуумную камеру подают хлористый водород. Под влиянием реакции аммиака и хлористого водорода и образования твердого нашатыря, оседающего на стенках вакуумной камеры, в последней образуется пониженное давление. В результате этого поршень под давлением внешнего атмосферного давления поднимается к верхней мертвой точке (а.с. СССР №23033, кл. F01В 29/02, 1931).

Вакуумный двигатель для реализации указанного способа включает цилиндры с поршнями, образующие рабочую камеру, поршень соединен с коленчатым валом через шатун, в крышке цилиндра выполнены отверстия, одно — для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе — для подачи газа в рабочую камеру. Устройство имеет резервуар для хлористого водорода, который подают через патрубок в вакуумную камеру (а.с. СССР №23033, кл. F01В 29/02, 1931).

Недостатком данного способа и устройства для его осуществления является использование высокотоксичных газов — аммиака и хлористого водорода. Это предъявляет жесткие требования по обеспечению безопасности и ограничивает возможность использования данного решения в связи с возможностью утечки газов и загрязнения окружающей среды. Кроме того, в данном устройстве невозможно регулировать мощность, так как в замкнутом объеме вакуумной камеры сложно создавать высокое или низкое разрежение за счет образования твердого нашатыря в результате реакции аммиака и хлористого водорода.

Задачей изобретения является создание усовершенствованного способа работы вакуумного двигателя и устройство для его осуществления.

Технический результат — повышение безопасности работы за счет исключения использования токсичных компонентов и обеспечение регулирования мощности устройства — достигается тем, что в способе работы вакуумного двигателя, включающем создание разрежения в рабочей камере путем сообщения ее с вакуумной камерой для перемещения поршня к верхней мертвой точке и подачу в рабочую камеру газа для перемещения поршня к нижней мертвой точке, согласно изобретению, на крышке цилиндра устанавливают пружинный клапан со штоком, один конец которого обращают к поршню для оказания давления на шток при перемещении поршня к верхней мертвой точке и сообщают рабочую камеру с атмосферой через пружинный клапан при изменении положения штока под давлением поршня для запуска воздуха и перемещения поршня к нижней мертвой точке.

Вакуумный двигатель для реализации предлагаемого способа, включающий цилиндры с поршнями, образующие рабочие камеры, поршни соединены с коленчатым валом через шатуны, в крышке каждого цилиндра выполнены отверстия, одно — для сообщения рабочей камеры цилиндра с вакуумной камерой через вакуумный патрубок, снабженный краном, а второе — для подачи газа в рабочую камеру, согласно изобретению, снабжен компрессором, распределительным валом с кулачками и толкателями, каждый из цилиндров имеет пружинный клапан, расположенный со стороны отверстия для подачи газа, в корпусе пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток, снабженный упором и пружиной, в корпусе клапана выполнено отверстие для сообщения рабочей камеры с атмосферой, а кран на каждом вакуумном патрубке связан с распределительным валом через толкатель.

Установка на крышке цилиндра пружинного клапана со штоком обеспечивает возможность сообщения рабочей камеры с атмосферой и позволяет использовать атмосферный воздух в качестве рабочего тела для перемещения поршня к нижней мертвой точке.

Создание разрежения в рабочей камере двигателя с помощью компрессора исключает применение каких-либо токсичных газов и обеспечивает безопасность работы двигателя. При этом достигается возможность регулирования мощности и расширяется область использования двигателя, так как в связи с отсутствием ядовитых компонентов и токсичных выхлопов он может быть установлен в закрытых и непроветриваемых помещениях.

Изобретение поясняется чертежами, где на фиг.1 представлен общий вид вакуумного двигателя; на фиг.2 — пульт управления, общий вид; на фиг.3 — пружинный клапан, продольный разрез.

Вакуумный двигатель включает вакуумную камеру 1, соединенную с компрессором 2, вакуумный трубопровод 3, крышки цилиндров 4, между крышкой 4 и блоком цилиндров имеется уплотнительная прокладка 5. На вакуумном трубопроводе 3 установлен автоматический кран 6 для подачи вакуума из вакуумной камеры 1 в вакуумный трубопровод 3. Между вакуумной камерой 1 и компрессором 2 установлены краны 7 и 8. На вакуумном трубопроводе 3 установлен вакуумный патрубок 9 с краном 10.

Вакуумный двигатель включает цилиндры 30, 33, 36 и 38 с поршнями 29, 32, 35 и 39, образующие рабочие камеры. Поршни соединены с коленчатым валом (не показан) через шатуны 31, 34, 37 и 40. Цилиндры 30, 33, 36 и 38 размещены в блоке 41.

В крышке 4 каждого цилиндра выполнены отверстия, одно 13, 18, 22 и 26 — для сообщения рабочей камеры цилиндра с вакуумной камерой 1 через вакуумные патрубки 9, 14 и вакуумные шланги 12, 16, 19 и 23, а второе 51 — для подачи газа в рабочую камеру. Распределительный вал 27 выполнен с кулачки (не показаны). Каждый из цилиндров 30, 33, 36 и 38 имеет пружинный клапан, расположенный со стороны отверстия 51 для подачи газа. В корпусе 48 пружинного клапана установлен с возможностью взаимодействия с поршнем и перемещения шток 50, снабженный упором 52 и пружиной 49, в корпусе 48 клапана выполнено отверстие 51 для сообщения рабочей камеры с атмосферой. Упор 52 имеет изолирующую прокладку 53. Каждый из кранов 10, 15, 20 и 24 на вакуумных патрубках 9, 14 связан с распределительным валом 27 через толкатель 11, 17, 21 и 25 с пружиной. Вакуумные шланги 12, 16, 19 и 23 соединены с отверстиями 13, 18, 22 и 26 крышки 4 за счет специальных штуцеров (не показаны). Краны 7 и 8 смонтированы на вакуумном трубопроводе 28. Кроме того, на вакуумном трубопроводе 3 установлен стабилизатор вакуума 42, который служит для увеличения или уменьшения мощности вакуумного двигателя и который соединен с вакуумным шлангом 43 и вакуумметром 44, расположенным на приборном щитке 47, на котором также установлен тумблер 46, связанный проводами 45 с автоматическим краном 6.

Вакуумный двигатель работает следующим образом.

Включают тумблер 46 на приборном щитке 47, и вследствие чего по проводам 45 передаются импульсы на автоматический кран 6, который открывается, и вакуум из вакуумной камеры 1 распространяется по вакуумному трубопроводу 3, а оттуда по вакуумным патрубкам 9 и 14, причем, вакуумный патрубок 9 имеет меньший внутренний диаметр в сравнении с вакуумными патрубками 14. Этот фактор связан со стабилизацией давления в трубопроводе 3. Кроме того, вакуумный стабилизатор 42 выравнивает степень разрежения на всем участке вакуумного трубопровода 3.

Далее торцы толкателя 11 с пружиной, а также торец толкателя 21 с пружиной контактируют попеременно с выступами кулачков распределительного вала 27, причем другие торцы толкателей 17 и 25 со своими пружинами также контактируют с выступами кулачков распределительного вала 27. В результате чего торцы толкателей воздействуют на пробки одного или нескольких кранов, например 10 и 15 или 20 и 24, краны открываются и сообщают вакуумные шланги 12, 16, 19 и 23 с вакуумной камерой 1 и затем с рабочей камерой в цилиндрах 30, 33, 36 и 38 через отверстия 13, 18, 22 и 26 в крышках 4. В результате чего поршни 29, 32, 35 и 39 с шатунами 31, 34, 37 и 40 приходят в движение, так как разрежение над поршнями 29, 32, 35 и 39 и атмосферное давление на участке соединения поршней 29, 31, 32 и 34 с шатунами 31, 34, 37 и 40 предопределяют возвратно-поступательное движение поршней 29, 32, 35 и 39, и их шатуны 31, 34, 37 и 40 заставляют вращаться коленчатый вал (не показан). Таким образом осуществляется запуск вакуумного двигателя, при этом следует отметить, что поршень перемещается к верхней мертвой точке за счет разрежения, создаваемого вакуумной камерой, и притягивания к крышке 4 блока 41. Для того, чтобы снять разрежение в рабочей камере, необходимо осуществить запуск воздуха из атмосферы. Это реализуется за счет пружинных клапанов 48. При перемещении поршня к верхней мертвой точке он оказывает своим днищем давление на шток 50, один конец которого выступает на некоторую длину в пространство рабочей камеры между днищем поршня и головкой цилиндра, и тем самым под действием днища шток 50 перемещается в верхнее положение и сжимает упором 52 пружину 49. По окончании перемещения штоков 50 с упорами 52 и максимальном сжатии пружины 49 открывается доступ атмосферного воздуха через отверстия 51 в рабочие камеры двигателя. Поршни получают возможность возвратно-поступательно перемещаться. В дальнейшем после доступа воздуха в рабочую камеру штоки 50 со своими упорами 52 перемещаются в первоначальное положение под действием пружины 49. Упоры 52 штоков 50 перекрывают отверстия 51. Прокладки 53 обеспечивают герметичность системы, поэтому исключается доступ воздуха в пространство рабочей камеры. При этом вышеуказанные циклы работы пружинных клапанов при работе вакуумного двигателя повторяются вплоть до остановки работы вакуумного двигателя.

В дальнейшем при работе вакуумного двигателя в соответствии с вращением коленчатого вала с помощью шестерни включается в работу компрессор 2. С началом работы компрессора 2 автоматически открываются краны 7 и 8 на вакуумном трубопроводе 28, и в вакуумной камере 1 создается разрежение. Вакуум вновь распространяется при открытом автоматическом кране 6 в вакуумный трубопровод 3, в вакуумные патрубки 9 и 14, а затем попеременно при открытии кранов 10, 15, 20 и 24 с помощью того или иного толкателя 11, 17, 21 и 25 попеременно по вакуумным шлангам 12, 16, 19 и 20 попеременно в цилиндры 30, 33, 35 и 38 через отверстия 13, 18, 22 и 26 крышки 4, и в это время возвратно-поступательно перемешаются поршни 29, 32, 35 и 39 со своими шатунами 31, 34, 37 и 40, которые взаимодействуют с коленчатым валом, передавая ему крутящий момент. Вращение вала приводит механизм, например, автомобиля в движение. Увеличение или уменьшение мощности вакуумного двигателя осуществляется за счет стабилизатора вакуума 42 (например, по патенту РФ №2110698). Поворотом тумблера 46 вправо или влево, установленным на приборном щитке 47, производят включение устройства, в результате чего импульсы поступают по проводам 45 в автоматический кран 6 вакуумной камеры 1, в которой после поданных импульсов увеличивается или уменьшается степень разрежения. В зависимости от этого увеличивается или уменьшается величина вакуума в рабочих камерах цилиндров 30, 33, 36 и 38, что приводит к увеличению или уменьшению мощности вакуумного двигателя.

Кроме того, ресурс эксплуатации вакуумного двигателя значительно выше, чем у двигателя внутреннего сгорания из-за отсутствия у вакуумного двигателя таких негативных факторов, как тепловые воздействия, кавитационные разрушения и другие факторы, которые влияют на нарушение геометрических параметров деталей двигателей внутреннего сгорания.

По сравнению с прототипом заявленный двигатель характеризуется безопасностью работы за счет исключения использования токсичных компонентов и позволяет регулировать мощность устройства.

1. Способ работы вакуумного двигателя, включающего блок цилиндров с поршнями, заключающийся в создании разрежения в рабочих камерах цилиндров путем сообщения их с вакуумной камерой для перемещения поршней к верхним мертвым точкам и подачи в рабочие камеры воздуха для перемещения поршней к нижним мертвым точкам, отличающийся тем, что на крышке блока цилиндров для каждого цилиндра устанавливают пружинные клапаны со штоками, один конец каждого из которых обращают к соответствующему поршню для оказания давления на его шток при перемещении поршня к верхней мертвой точке и сообщают рабочие камеры с атмосферой посредством пружинных клапанов при изменении положения штоков под давлением поршней для впуска воздуха и перемещения поршней к нижним мертвым точкам.

2. Вакуумный двигатель, содержащий блок цилиндров с поршнями, образующими в цилиндрах рабочие камеры, вакуумную камеру и коленчатый вал, отличающийся тем, что он снабжен компрессором и распределительным валом с кулачками и толкателями, а каждый цилиндр снабжен пружинным клапаном, при этом поршни соединены с коленчатым валом посредством шатунов, в крышке блока цилиндров для каждого цилиндра выполнены отверстия: одно с возможностью сообщения его рабочей камеры с вакуумной камерой посредством соответствующего вакуумного патрубка с краном, связанным с распределительным валом через толкатель, а второе — с возможностью подачи воздуха в рабочую камеру, причем каждый пружинный клапан цилиндра расположен со стороны отверстия для подачи воздуха и имеет корпус и шток, снабженный упором и пружиной и установленный с возможностью перемещения и взаимодействия с поршнем, и в корпусе каждого пружинного клапана выполнено отверстие с возможностью сообщения рабочей камеры с атмосферой.

Проект вакуумной машины — Паровые двигатели

Добрый день!

 

Постепенно зреет проект вакуумной машины. Цель — малая электрификация. В обычной машине с выхлопом в атмосферу при 3 атм. избыточного давления вода испаряется при 140С, а конденсируется, можно считать, при 100С. Перепад 40С, КПД Карно = 9,69%. Представим себе машину, в которой вода испаряется при 100С, а конденсируется при 60С (давление насыщенного пара 0,2ата, если Кошкин-Ширкевич не врёт). Перепад температур — такой же, КПД Карно — 10,7%.Т.е., паровая машина с перепадом 100-60С теоретически должна работать не хуже, чем машина с перепадом 140-100С В чём отличие? Объём пара на входе в машину примерно в 4, а на выходе — в 5 раз больше, значит, нужна машина большего размера. Негерметичность машины и попадание в неё воздуха приведёт к остановке. Зато котёл можно сделать в виде обычного чайника, кипящего на огне, и он не взорвётся. Обычный чайник, стоящий на газовой плите, принимает тепловую мощность порядка 2кВт, т.е. при КПД машины в 5% его достаточно для машины в 100ватт. Сложность разработки переносится на конденсатор, но в нём нет давления и он не опасен! Воду с температурой 60С всё ещё можно использовать для хозяйственных нужд.

 

Хочется сделать конденсатор, в котором охлаждающая вода будет поступать в замкнутый сосуд, стекать там по насадке или тарелкам, навстречу ей будет двигаться пар. Из нижней части конденсатора вода будет откачиваться насосом, а из верхней части будут откачиваться неконденсирующиеся газы, если они вдруг туда попадут.

 

В такой машине самая главная деталь — это, безусловно, конденсатный «насос», а точнее, комбинация поршневого гидродвигателя, который впускает охлаждающую воду в конденсатор с совершением полезной работы, и использует эту работу для откачки другой порции уже подогретой и смешанной с конденсатом воды из конденсатора с помощью поршневого насоса. Недостающую работу покрывает привод.

 

Ищем единомышленников, слушаем критиков.

Изменено пользователем denis2

Вакуумный двигатель — Российская газета

Юрий Бауров уже вошел в историю науки. Правда, не с парадного входа. Он попал в научный бестселлер «Ученые с большой дороги», написанный председателем Комиссии по борьбе с лженаукой, РАН академиком Эдуардом Кругляковым.

— В отличие от других «героев» книги со мной академик обошелся довольно мягко, — замечает Юрий Алексеевич. — Мол, мои эксперименты не укладываются в современные научные представления, а потому их следует проверить в авторитетных лабораториях. С тех пор таких проверок было несколько, результаты опубликованы в известных научных журналах. О чем и сообщил академику, но ответа не получил.

…ЦНИИМаш — организация серьезная. Многие годы была одним из флагманов российской космонавтики. Здесь расположен знаменитый Центр управления полетами. И здесь же заведующий лабораторией Юрий Бауров ведет свои «еретические» исследования, пытаясь понять — возможно ли из физического вакуума получать энергию.

Именно на слове «возможно» настаивают руководители ЦНИИМаша, в частности и его директор, академик РАН Николай Анфимов. (Он вместе с создателем легендарного «Бурана» Г. Лозино-Лозинским написал предисловие к, мягко говоря, спорной книге Баурова.) Сам же автор убежден, что уже черпает энергию из вакуума. Что и продемонстрировал мне в своей лаборатории.

Внешне все выглядело прозаично. Бауров подвел меня к своему двигателю, включил, и через несколько минут датчик показал, что его масса — а она около 90 кг — уменьшилась на 25 грамм.

Кто-то удивится — и все? Все. Сам автор считает результат феноменальным. Но эти граммы вызвали энтузиазм и у руководителей ЦНИИМаша. Они впервые дали «добро» на то, чтобы Бауров «засветил» название уважаемой и осторожной организации, рассказав, что в ее стенах уже многие годы идут такие «бредовые» с точки зрения современной физики эксперименты. Почему?

— Развиваемая двигателем тяга в 30 раз больше, чем у лучших космических электрореактивных установок, с помощью которых корректируют положение аппаратов на орбитах, — объясняет Бауров. По его словам, ракета с таким двигателем сможет перемещаться в космосе вообще без расхода топлива. Только на энергии из вакуума.

Знаменитый фантаст Артур Кларк прогнозировал, что уже в 2010 году человечество сможет «качать» энергию из вакуума, который по латыни означает «ничто». Попытки его запрячь делаются в разных странах. Однако задача столь сложна, что положить на нее жизнь отваживаются лишь отъявленные энтузиасты. Судя по публикациям в научных журналах, Бауров продвинулся на этом пути дальше остальных. Своим «крестным отцом» он считает нобелевского лауреата, академика Александра Михайловича Прохорова, который под свою ответственность рекомендовал его статью в журнал «Доклады Академии наук». В этой первой публикации Бауров застолбил свой приоритет на открытие нового явления природы.

С тех пор выполнено еще несколько работ, каждая из которых, по мнению ученого, дает все новые свидетельства, что найден ключ к вакууму. Скажем, с помощью электромагнитного поля (сам способ воздействия является ноу-хау) можно не только менять массу тел, но и в разы увеличивать кпд энергоустановок. Или влиять на скорость b-распада, что противоречит законам физики.

Почему Баурову удалось опередить других таких же энтузиастов? Его эксперименты базируются на разработанной им теоретической модели вакуума. Кстати, само понятие «физический вакуум» родилось из формул квантовой физики, когда ученым надо было как-то назвать «место», где рождаются элементарные частицы — «кирпичики» нашего мира — и куда они исчезают.

И из формул Баурова совершенно неожиданно «появилась» новая фундаментальная константа нашего мира. Она обладает двумя удивительными свойствами. Всегда направлена к созвездию Геркулеса, к которому, между прочим, летит наша Солнечная система. И самое главное — от нее зависят массы элементарных частиц.

— А это и есть ключ к вакууму, — говорит Бауров. — Нам в своих экспериментах удалось его возмутить. Иными словами, так вмешаться в гравитационный процесс формирования масс, что они стали уменьшаться. А энергию, говоря образно, «извлекаем» из знаменитой формулы Эйнштейна Е = mc2. Потеря массы и порождает энергию.

Конечно, это очень приблизительное изложение сути работ ученого, на которые потрачены десятилетия его жизни. Убедил ли он коллег в своей правоте? Вряд ли. Но вот заинтересовать кое-кого из них удалось. Ученые наших ведущих научных центров, из Дубны и Троицка, без каких-либо грантов и средств из бюджета взялись проверять его опыты. И пока результаты независимых проверок совпадают с теми, что получены Бауровым. Но до окончательных выводов далеко. Слишком они революционны. А потому требуется осторожность. Или очень веские, «неубиенные» доказательства.

— Чтобы убедить широкие массы, мне нужно 200 тысяч долларов, — говорит ученый. — Вполне достаточно для постройки генератора. Получив начальный импульс, он сможет затем извлекать энергию из вакуума. Отключенный от розетки будет крутиться сколько угодно.

Осчастливит ли Бауров человечество энергией из «ничего»? Или его теории, эксперименты, как это нередко бывает, окажутся очередным артефактом?

Наука жестока. Она дарит и фантастические ощущения счастья, когда ученый открывает фундаментальный закон природы. И горчайшие разочарования, когда жар-птица, которая, кажется, уже в руках, превращается в «ничто».

Сами ученые утверждают, что в науке ничего не пропадает. Отрицательный результат так же важен, как и положительный. Скажем, попытки алхимиков — в нынешнем понимании ярких представителей лженауки получить золото — заложили основу химии.

Как Найти Подсос Воздуха в Двигателе (Вакуумная Утечка)

Утечка вакуума может вызвать множество проблем с управляемостью, так как она добавляет лишний, нежелательный воздух в двигатель, вытесняя смесь воздуха и топлива. Современные двигатели внутреннего сгорания (многопортовый впрыск топлива) используют впускной вакуум для управления датчиками, исполнительными механизмами и силовыми тормозами (на некоторых автомобилях). Старые двигатели также используют его для управления некоторыми устройствами контроля выбросов и подачи топлива в камеру сгорания.

Таким образом, даже небольшая утечка вакуума или подсос воздуха может обмануть вас и ваш автомобильный компьютер, заставив вас поверить, что конкретный датчик или система нуждается в ремонте. Затем вы начинаете заменять компоненты, надеясь, что вы решите проблему, но безуспешно.

подсос воздуха во впускном коллекторе симптомыподсос воздуха во впускном коллекторе симптомы

Часто утечка вакуума издает слышимый шипящий звук, который облегчает поиск, в других случаях, однако, вы ничего не услышите. Автомагазины и СТО используют специальное, дорогостоящее оборудование для обнаружения трудно обнаруживаемых утечек. Но прежде чем отправиться в магазин, вы можете применить простые методы, используемые для отслеживания наиболее распространенных утечек вакуума.

Это руководство не только поможет вам найти утечку вакуума или засоренный вакуумный шланг, а также даст полезные советы по ремонту и также расскажет, какие проблемы с работой двигателя могут указывать на возможную утечку вакуума. Итак, начнем там.

Прокладки корпуса дроссельной заслонки и впускного коллектора также могут образовывать утечки.

Как проверить подсос воздуха и устранить неполадку из-за возможной утечки вакуума

Вакуумные шланги являются распространенным источником проблем с работой двигателя. После долгих лет эксплуатации вакуумные шланги изнашиваются, затвердевают, расщепляются или размягчаются, и вакуумные трубки ухудшаются, становятся хрупкими и ломаются, вызывая всевозможные проблемы производительности двигателя.

Поэтому, когда вы замечаете проблему с работой двигателя и не можете найти источник, включите диагностику утечки вакуума в свою стратегию ремонта.

как найти подсос воздуха в двигателекак найти подсос воздуха в двигателе

В зависимости от вашей марки и модели автомобиля, вы можете найти различные датчики и исполнительные механизмы, которые зависят от хорошего источника вакуума для работы. Например, в некоторых двигателях используется датчик абсолютного давления в коллекторе (MAP), которому требуется вакуум для измерения давления наружного воздуха.

Утечка вакуума датчика MAP может нарушить время зажигания, стабильность и эффективность двигателя. Утечка вакуума также может препятствовать открытию клапана EGR , вызывать перегрев двигателя и увеличивать вредные выбросы. Этот тип утечки также может повлиять на систему принудительной вентиляции картера (PCV).

Подсос воздуха симптомы

Вот список проблем производительности, о которых следует помнить, поскольку они могут быть связаны с утечкой вакуума:

  • Жесткий старт
  • Низкая мощность двигателя
  • Пропуски воспламенения смеси
  • Плохая экономия топлива
  • Плохое ускорение
  • Грубый холостой ход
  • Высокий холостой ход
  • Двигатель работает прерывисто (как бы кашляет)
  • Плохая работа тормозов (на вакуумных силовых тормозах)

 

Имейте в виду, что эти симптомы не являются исключительными для утечки вакуума. Например, неисправный клапан EGR, плохое сжатие или проблемы с моментом зажигания могут также вызывать один или несколько из этих симптомов.

как проверить подсос воздуха в двигателекак проверить подсос воздуха в двигателе

Проверьте разъемы вакуумного шланга на наличие трещин, которые могут привести к утечке вакуума.

Как найти подсос воздуха и вакуумную утечку

ХОРОШО. У вас проблемы с работой двигателя, и вы хотите проверить где система подсасывает воздух или теряет герметичность, с чего начать?

Сначала найдите вакуумную диаграмму для вашего автомобиля. Вы можете найти копию вакуумной схемы в руководстве по эксплуатации вашего автомобиля, но большинство производителей автомобилей включают схему в моторном отсеке. Поднимите капот и осмотрите переднюю часть моторного отсека, чтобы найти наклейку.

Если вы не можете найти его в своем руководстве или в моторном отсеке, вы можете купить его в отделе обслуживания дилеров. Другим источником является руководство по ремонту вашего автомобиля, которое содержит все виды полезной информации, которую вы можете использовать для обслуживания и устранения неисправностей многих автомобильных систем. Таким образом, вы сделаете хорошие инвестиции.

Диаграмма вакуума показывает различные устройства с вакуумным управлением и их взаимосвязь. Более новые модели автомобилей отображают сходство компонентов и их расположение.

ХОРОШО. Теперь, когда у вас есть схема вакуума для вашего автомобиля, вы можете приступить к поиску неисправностей для потенциальной утечки. Однако, даже если у вас нет диаграммы прямо сейчас, вы все равно можете выполнить следующие шаги.

как найти подсос воздухакак найти подсос воздуха

Примечание. Если вы пытаетесь обнаружить потенциальную утечку вакуума из-за кода неисправности, который вы получили после того, как загорелся индикатор Check Engine, возможно, ваш автомобильный компьютер корректирует соотношение воздух / топливо для компенсации, поэтому двигатель может не звучать так, как если бы у него были проблемы с производительностью. Если это так, отсоедините датчик положения дроссельной заслонки [установленный на корпусе дроссельной заслонки] или датчик кислорода, чтобы заставить компьютер запустить двигатель в режиме «жесткого кода» [разомкнутый контур], чтобы вы могли слышать двигатель – грубый холостой ход. Это облегчит обнаружение источника утечки вакуума во время диагностики.)

Если вы подозреваете конкретное устройство (или несколько), вы можете начать с этого устройства. В противном случае следуйте схеме и начните проверку каждого шланга. Если у вас нет схемы, проверьте каждый вакуумный шланг, когда вы двигаетесь вокруг двигателя. Большинство вакуумных шлангов тонкие и мягкие, за исключением того, что используется на усилителе тормозов, который является более толстым и прочным по конструкции, и, возможно, шланг PCV.

Устранение утечек вакуума требует тщательного визуального осмотра шланга, проверки его правильного подключения и прослушивания контрольного шипящего звука.

Но шум работающего двигателя может сделать невозможным услышать шипящий звук, исходящий от протекающего вакуумного шланга или прокладки. Для этого у вас есть два варианта: вы можете использовать стетоскоп механика, который помогает усилить звуки в вашем ухе, или вы можете использовать длину шланга для той же цели.

Как проверить каждый вакуумный шланг

Выполните следующие шаги для проверки каждого вакуумного шланга, соблюдая разумное расстояние от движущихся компонентов во время проверки:

  1. Запустите двигатель и дайте ему поработать на холостом ходу. Установите трансмиссию на парковочную (автоматическая) или нейтральная (механическая) и включите аварийный тормоз.
  2. Убедитесь, что шланг правильно подсоединен, не болтается. При обслуживании или замене компонента шланг легко повредить. Возможно, вам понадобится небольшое зеркало и фонарик, чтобы проверить труднодоступные места, например, за впускным коллектором, корпусом дроссельной заслонки или выпускным коллектором.
  3. Отсоедините и осмотрите оба конца шланга. Если внутренний конец шланга порван, изношен или расширен, отрежьте поврежденную часть и снова подсоедините шланг к фитингу.
  4. Проследите длину шланга пальцами, чтобы определить наличие шероховатых, закаленных, расщепленных, размягченных или мест, выделяющихся на общем фоне шланга. Кроме того, попытайтесь почувствовать вакуум в этих грубых или неровных местах.
  5. Проверьте, находится ли шланг рядом или не касается горячей поверхности.
  6. Кроме того, проверьте соединители шлангов, тройники и соединения на наличие трещин и ослаблений. Замените их при необходимости.
  7. Также проверьте шланг на наличие загрязнений, таких как масло, охлаждающая жидкость или другие вещества. Отсоедините шланг от устройства, к которому он подключается, и проверьте внутри разъема устройства. Если вы обнаружите инородное вещество внутри шланга, возможно, загрязнение проникло и внутрь устройства, возможно, оно не работает должным образом. Возможно, вам придется проверить устройство для правильной работы.
  8. В качестве части вашего визуального осмотра осмотрите устройства, к которым подключаются вакуумные шланги. Проверьте устройства на наличие повреждений, таких как трещины, вмятины и ослабленные детали. Они могут также создать вакуумную утечку. Сожмите вакуумную линию, ведущую к устройству, и обрызгайте его мыльной водой и посмотрите внимательно не пенится ли где-то, а если да –то утечка именно там.
  9. Если вы обнаружите шланг с размягченным, затверделым или поврежденным участком, замените его.

 

подсос воздуха симптомыподсос воздуха симптомы

Замените прокладку впускного коллектора, если возникнет утечка вакуума.

Подсос воздуха во впускном коллекторе симптомы

Хотя вы с большей вероятностью столкнетесь с утечкой из вакуумного шланга, также могут возникнуть утечки из прокладки впускного коллектора. Если предыдущая проверка не показала, что что-то не так, проверьте впускную прокладку между коллектором и головкой цилиндров, а также прокладку основания, расположенную между впускным коллектором и корпусом дроссельной заслонки или карбюратором.

как определить подсос воздуха во впускном коллекторекак определить подсос воздуха во впускном коллекторе

Для проверки этих прокладок вы можете использовать один из двух простых альтернативных методов:

  • Мыльная вода в распылителе.
  • Стетоскоп механика или слушать через длинный шланг прикладывая один конец к месту исследования, а второй к уху

Любой из этих методов хорош.

  1. Применить аварийные тормоза.
  2. Установите вашу передачу на парковку (автоматическая) или нейтральная (ручная).
  3. Заблокируйте колеса, чтобы они были безопаснее и не позволяли автомобилю двигаться.
  4. Запустите двигатель и дайте ему поработать на холостом ходу.
  5. Используйте мыльную воду, немного распылите вокруг впускного коллектора, где он сопрягается с головкой цилиндров и вокруг основания карбюратора или корпуса дросселя. Не забудьте визуально проверить сам впускной коллектор на наличие трещин и разбрызгивать воду в подозрительных местах.
  6. Слушайте любые изменения в работе двигателя на холостом ходу.
  7. Вы также можете увидеть пузыри на месте утечки вакуума.

 

Примечание. Чтобы использовать шланг (или стетоскоп механика), наденьте один конец шланга на ухо и переместите другой конец шланга вокруг края прокладки впускного коллектора и прокладки карбюратора или корпуса дроссельной заслонки. Если есть утечка воздуха, вы услышите шипящий звук.

утечка вакуума во впускном коллектореутечка вакуума во впускном коллекторе

Если вы обнаружили утечку вакуума во впускном коллекторе или в основании корпуса дросселя, сначала попробуйте затянуть крепежный болт впускного или дроссельного корпуса:

  • Затягивайте болты постепенно, следуя перекрестной схеме – при затягивании коллектора начните с центра и продолжайте.
  • Затяните болты моментом, указанным в руководстве по ремонту автомобиля, с помощью динамометрического ключа.
  • Проверьте еще раз на утечку вакуума.
  • Если утечка все еще присутствует, вам необходимо заменить прокладку впускного коллектора или прокладку корпуса дроссельной заслонки.
  • Следуйте инструкциям в руководстве по ремонту вашего автомобиля, чтобы заменить любую прокладку.

 

Посмотрите видео ниже, чтобы увидеть, как парень использует воду для диагностики пропуска зажигания на первом цилиндре.

Обнаружение вакуумной утечки с помощью воды

Часто для обнаружения утечки вакуума достаточно тщательного визуального и ручного осмотра, подобного описанному выше. Но не все время.

Некоторые компоненты, работающие в вакууме, могут иметь внутренние повреждения (например, разрыв мембраны). И вы не можете диагностировать этот тип повреждения прикосновением или зрением.

Итак, если вы подозреваете утечку вакуума, но не можете найти источник, это следующий шаг в вашей стратегии устранения неполадок.

как проверить подсос воздухакак проверить подсос воздуха

Для этого вам нужно использовать вакуумный насос с ручным управлением. Вы можете купить один в большинстве магазинов автозапчастей или онлайн. Вакуумный насос помогает в устранении неполадок систем выбросов. Но если вы не хотите покупать инструмент прямо сейчас, ваша местная СТО станция поможет вам в этом.

Следуйте инструкциям, прилагаемым к вакуумному насосу, для получения инструкций по эксплуатации и руководства по ремонту для вашего конкретного автомобиля, чтобы узнать, как устранить неисправность устройства, которое необходимо проверить.

Иногда вам необходимо устранить неполадки устройства при определенных условиях работы или в сочетании с другим инструментом. Хотя этот тип устранения неполадок может показаться сложным, вам не нужно специальное обучение. Тем не менее, вам все равно необходимо следовать инструкциям по эксплуатации инструмента и инструкциям по устранению неполадок в руководстве по ремонту.

дымогенератор для проверки подсоса воздуха своими рукамидымогенератор для проверки подсоса воздуха своими руками

Также следуйте этим советам при использовании вакуумного насоса:

  • Убедитесь, что соединение между насосом и устройством затянуто – используйте соединитель правильного диаметра или шланг для соединения.
  • Применяйте только необходимое количество вакуума для тестируемого устройства (обычно от 10 до 15 в рт. Ст., Обратитесь к руководству по ремонту).
  • Чем меньше разъемов, адаптеров и шлангов вы используете для подключения ручного насоса к устройству, которое вы хотите проверить, тем лучше.

 

Вы можете использовать штуцер для ремонта небольших протечек вакуумных шлангов.

Советы по ремонту вакуумных шлангов

Работа с поврежденными вакуумными шлангами не обязательно означает, что вам необходимо заменить их. Часто вакуумный шланг требует простого ремонта, который может занять пару минут или около того.

  • Вы можете отремонтировать поврежденный конец вакуумного шланга за минуту. В большинстве случаев вы можете обрезать примерно сантиметр на конце и снова подсоединить шланг.
  • Будьте осторожны, когда имеете дело с повреждениями, расположенными между концами вакуумного шланга. Если вам просто нужно отремонтировать маленькое отверстие менее чем на полдюйма, вырежьте поврежденную область и используйте штуцер, чтобы снова соединить две детали.
  • Во избежание путаницы ремонтируйте один вакуумный шланг за раз. Некоторые автомобили, особенно азиатских брендов, поставляются с несколькими вакуумными шлангами, что может затруднить ремонт, когда они соединяются различными способами. В этих случаях вы можете найти 1-, 2-, 3-, 4-контактные и коленчатые разъемы, чтобы справиться практически с любым видом прокладки и ремонта шланга.
  • Всегда маркируйте шланги и их соответствующие соединители или фитинги, чтобы заново установить отремонтированные или новые шланги в соответствующие фитинги.
  • Если вы найдете один или несколько отсоединенных шлангов, используйте диаграмму вакуума для повторного подключения шланга к правильному фитингу.
  • После ремонта проложите и закрепите вакуумный шланг вдали от горячих поверхностей и движущихся компонентов.
  • Всегда заменяйте вакуумный шланг на один и тот же диаметр и длину и для предполагаемого применения (PCV, усилитель тормозов или обычный вакуум).

 

Отправить ответ

avatar
  Подписаться  
Уведомление о